<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:SimSun;
panose-1:2 1 6 0 3 1 1 1 1 1;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:"\@SimSun";
panose-1:2 1 6 0 3 1 1 1 1 1;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
h3
{mso-style-priority:9;
mso-style-link:"Heading 3 Char";
margin:0in;
margin-bottom:.0001pt;
text-align:center;
page-break-after:avoid;
font-size:14.0pt;
font-family:"Times New Roman",serif;
font-weight:normal;}
h4
{mso-style-priority:9;
mso-style-link:"Heading 4 Char";
margin-top:2.0pt;
margin-right:0in;
margin-bottom:0in;
margin-left:0in;
margin-bottom:.0001pt;
page-break-after:avoid;
font-size:11.0pt;
font-family:"Calibri Light",sans-serif;
color:#2F5496;
font-weight:normal;
font-style:italic;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.Heading3Char
{mso-style-name:"Heading 3 Char";
mso-style-priority:9;
mso-style-link:"Heading 3";
font-family:"Times New Roman",serif;}
span.Heading4Char
{mso-style-name:"Heading 4 Char";
mso-style-priority:9;
mso-style-link:"Heading 4";
font-family:"Calibri Light",sans-serif;
color:#2F5496;
font-style:italic;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif">Dear Colleagues,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif">INFORMS QSR would like to invite you to attend the webinar from 1pm to 2pm Central Time, February 22.
<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<h3><b><span style="font-size:16.0pt">Research Roadmaps and Recent Advances in Data Science for Prognostics<o:p></o:p></span></b></h3>
<h3><b><span style="font-size:16.0pt"><o:p> </o:p></span></b></h3>
<h3><b>Dr. Kaibo Liu<o:p></o:p></b></h3>
<p class="MsoNormal" align="center" style="text-align:center"><span style="font-family:"Times New Roman",serif"><o:p> </o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center"><i><span style="font-size:12.0pt;font-family:"Times New Roman",serif">Professor of Industrial and Systems Engineering<o:p></o:p></span></i></p>
<p class="MsoNormal" align="center" style="text-align:center"><i><span style="font-size:12.0pt;font-family:"Times New Roman",serif">University of Wisconsin-Madison<o:p></o:p></span></i></p>
<p class="MsoNormal" align="center" style="text-align:center"><i><span style="font-size:12.0pt;font-family:"Times New Roman",serif"><o:p> </o:p></span></i></p>
<p class="MsoNormal" align="center" style="text-align:center"><b><span style="font-size:12.0pt;font-family:"Times New Roman",serif">Feb. 22 (Thursday) | 1pm-2pm Central Time<o:p></o:p></span></b></p>
<p class="MsoNormal" align="center" style="text-align:center"><b><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:#1F4E79"><o:p> </o:p></span></b></p>
<p class="MsoNormal" align="center" style="text-align:center"><b><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:#1F4E79">Zoom ID: 944 4133 2267<o:p></o:p></span></b></p>
<p class="MsoNormal" align="center" style="text-align:center"><b><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:#1F4E79">Zoom link:
<a href="https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fuiowa.zoom.us%2Fj%2F94441332267&data=05%7C02%7CIEFac.list%40mailhost.ces.clemson.edu%7C8ec593f2dfa84d8ca9d808dc2cdfafaf%7C0c9bf8f6ccad4b87818d49026938aa97%7C0%7C0%7C638434586899007207%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=7fZ%2F8u5ZQeKbsz4%2FnFZ16uV9VO8Ff4IYhCf1XdTl5bY%3D&reserved=0" originalSrc="https://uiowa.zoom.us/j/94441332267" shash="OkEot4cni25JyxEBezbZN+MrbQha+Plcl2dXB8TpGmH9Je986iCy4BziymHJx2q4AjjrwB9ei3efrrB1Fj5WxOcU+ZDBoPIdOKsXlRPTbPMwycsEBxBz45keeQm6QpOTNZxcmf7lfsNz3eeGRm8SeXT2Qo0uVUjGuH7hkjRQrhw=">https://uiowa.zoom.us/j/94441332267</a><o:p></o:p></span></b></p>
<p class="MsoNormal" align="center" style="text-align:center"><o:p> </o:p></p>
<h4 style="text-align:justify"><b><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal">Abstract</span></b><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal">:
<o:p></o:p></span></h4>
<h4 style="text-align:justify"><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal">In this presentation, we will delve into research roadmaps and recent advances in data science for prognostics in complex systems—a crucial element
for predictive maintenance in different applications. Complex systems typically feature multiple sensors for real-time status monitoring, often operating under various scenarios, encompassing multiple failure modes and operational conditions. When faced with
a specific failure, different sensors may exhibit varying sensitivities, signal-to-noise ratios, sampling rates, and levels of sparsity. Therefore, one critical question is how to develop effective data fusion methods to select the best sensors and combine
the information for better characterizing the underlying degradation process. Building upon the developed data fusion models, we will further discuss how to perform individualized prognostics with uncertainty quantification in a heterogenous fleet via transfer
learning and conduct enhanced decision makings based on the prognostic results. Such research efforts have led to significant benefits that contribute to cost savings in operation and maintenance, increased production efficiency and requirement lifespan, and
improved overall customer satisfaction and operational performance.<o:p></o:p></span></h4>
<h4 style="text-align:justify"><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal"><o:p> </o:p></span></h4>
<h4 style="text-align:justify"><b><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal">Biographical Sketch</span></b><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal">:
<o:p></o:p></span></h4>
<h4 style="text-align:justify"><span style="font-family:"Times New Roman",serif;color:windowtext;font-style:normal">Dr. Kaibo Liu is currently a professor in the Department of Industrial and Systems Engineering at the University of Wisconsin-Madison and serves
as the Associate Director of the UW-Madison IoT Systems Research Center. He earned his B.S. degree in industrial engineering and engineering management from the Hong Kong University of Science and Technology, an M.S. degree in statistics, and a Ph.D. degree
in industrial engineering from the Georgia Institute of Technology. Dr. Kaibo Liu’s research is in system informatics and big data analytics, with an emphasis on the data fusion approach for system modeling, monitoring, diagnosis, prognostics, and decision
making. His research has been successfully funded by NSF, ONR, AFOSR, ERDC, DOE, NIH, and Industry. He is the recipient of three prestigious early career awards, including the 2019 Outstanding Young Manufacturing Engineer Award by SME, the 2019 Feigenbaum
Medal Award by ASQ, and the 2019 Dr. Hamed K. Eldin Outstanding Early Career IE in Academia Award by IISE. He is also the winners of the Innovations in Education Award from IISE in 2020 and the Award for Technical Innovation in Industrial Engineering from
IISE in 2021. He received the honor of Georgia Tech Alumni Association’s 40 Under 40 in 2023. Dr. Kaibo Liu is currently serving as a senior editor of IEEE Transactions on automation science and engineering and as the department editor of IISE Transactions
on Data Science, Quality and Reliability. More information can be found in his website:
<a href="https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fkaibo.ie.wisc.edu%2Findex.html&data=05%7C02%7CIEFac.list%40mailhost.ces.clemson.edu%7C8ec593f2dfa84d8ca9d808dc2cdfafaf%7C0c9bf8f6ccad4b87818d49026938aa97%7C0%7C0%7C638434586899007207%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=P5meHIXtPanPWsCUec22qkUOs1nkHcMqX6x4jyCdglk%3D&reserved=0" originalSrc="http://kaibo.ie.wisc.edu/index.html" shash="xSaxSqXjuYLAlO4A987uqIZwBl1xz8eseopNfbEZEa9hreGKwAdXOiqCyD80F/EeD21IBCyEAaRcZuUnRohRlbyIAqDvI6Nmun2SYCyKiOEsmsbGae082Q/eIwL0qYpho/bCzV/Xi2D+LO2hz2XAzESsYDu7qI167vkbAopkWWQ="><span style="color:windowtext">http://kaibo.ie.wisc.edu/index.html</span></a><o:p></o:p></span></h4>
<p style="margin:0in;margin-bottom:.0001pt;text-align:justify"><o:p> </o:p></p>
<p class="MsoNormal" align="center" style="text-align:center"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:black">--<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif">Wenmeng Tian, Ph.D.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif">Associate Professor<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif">Industrial and Systems Engineering<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif">Mississippi State University<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif"><a href="https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.theidealab-tian.com%2F&data=05%7C02%7CIEFac.list%40mailhost.ces.clemson.edu%7C8ec593f2dfa84d8ca9d808dc2cdfafaf%7C0c9bf8f6ccad4b87818d49026938aa97%7C0%7C0%7C638434586899007207%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=yMYbFRkGMjt7%2BcGbkYTm%2FyRBetVowZUcbB%2BUZ5uXpt4%3D&reserved=0" originalSrc="http://www.theidealab-tian.com/" shash="La2TyB15QzyoCLDkJlFdZHmpAmck72sB2XwxtGqypR0uux5z2wXX27alXeNdkH0rscfB7NJBHXR+ntqfTJAh0cYtIdtIMvsSFJh6rDYh95txBdFaNPkaQYSTEcalAiRz64ADgySR3zCEPjLDVNYvjHJeuomFiHKgmHn7DCFpL84="><span style="color:#0563C1">IDEA Lab</span></a> |
<a href="mailto:tian@ise.msstate.edu"><span style="color:#0563C1">tian@ise.msstate.edu</span></a> | +1 (662) 325 7625
<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>