<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body dir="ltr">
<br>
<div class="moz-forward-container">
<div class="moz-forward-container">
<div class="moz-forward-container">
<div class="moz-forward-container">
<div class="moz-forward-container">
<style type="text/css" style="display:none;">P {margin-top:0;margin-bottom:0;}</style>
<div style="font-family: Tahoma, Geneva, sans-serif;
font-size: 10pt; color: rgb(0, 0, 0);"> Colleagues,</div>
<div style="font-family: Tahoma, Geneva, sans-serif;
font-size: 10pt; color: rgb(0, 0, 0);"> <br>
</div>
<div style="font-family: Tahoma, Geneva, sans-serif;
font-size: 10pt; color: rgb(0, 0, 0);"> As
Editor-in-Chief of Decision Analysis, I am delighted to
announce that one of the finalists for the
Clemen-Kleinmuntz Decision Analysis Best Paper Award
from the journal for 2022 is Dr. Eric Bickel of the
Department of Operations Research and Industrial
Engineering at UT Austin, for the following paper: <br>
<br>
<div style="font-family: Tahoma, Geneva, sans-serif;
font-size: 10pt; color: rgb(0, 0, 0);
background-color: rgb(255, 255, 255);" class="elementToProof ContentPasted0 ContentPasted1
ContentPasted2 ContentPasted3 ContentPasted4
ContentPasted5">
Colin Small, J. Eric Bickel <br class="ContentPasted5">
<strong><a class="pop ContentPasted5" href="https://pubsonline.informs.org/stoken/default+domain/PR-2-2023/full/10.1287/deca.2022.0457" data-loopstyle="link">Model Complexity and
Accuracy: A COVID-19 Case Study</a></strong><br>
</div>
<a href="https://pubsonline.informs.org/stoken/default+domain/PR-2-2023/full/10.1287/deca.2022.0457" id="LPlnk763433" class="moz-txt-link-freetext">https://pubsonline.informs.org/stoken/default+domain/PR-2-2023/full/10.1287/deca.2022.0457</a><a class="moz-txt-link-freetext" href="https://doi.org/10.1287/deca.2020.0421" moz-do-not-send="true"></a><br>
<br>
When creating mathematical models for forecasting and
decision making, there is a tendency to include more
complexity than necessary, in the belief that
higher-fidelity models are more accurate than simpler
ones. In this paper, we analyze the performance of
models that submitted COVID-19 forecasts to the U.S.
Centers for Disease Control and Prevention and evaluate
them against a simple two-equation model that is
specified using simple linear regression. We find that
our simple model was comparable in accuracy to highly
publicized models and had among the best-calibrated
forecasts.This result may be surprising given the
complexity of many COVID-19 models and their support by
large forecasting teams. However, our result is
consistent with the body of research that suggests that
simple models perform very well in a variety of
settings.<br>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>